Skip to main content
Log in

Inactivation of Escherichia coli and MS2 coliphage via singlet oxygen generated by homogeneous photosensitization

  • Rapid Communication
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The inactivation kinetics of E. coli and MS2 coliphage by singlet oxygen (1O2) were investigated in a homogeneous photosensitization system using Rose Bengal (RB) and visible light illumination (the Vis/RB system). The inactivation of E. coli and MS2 in the Vis/RB system was monitored over time with variations of several parameters such as pH, light intensity, concentration of RB, and the presence of dissolved oxygen. In addition, the concentration of 1O2 generated by the Vis/RB system was quantified using furfuryl alcohol under each microbial inactivation conditions. Based on the obtained results, the degree of microbial inactivation was quantitatively correlated with 1O2 exposure using the (delayed) Chick-Watson model. The Ct (concentration-time product) values of 1O2 required for 2 log microbial inactivation were found to be 1.3×10−4 mg·min/L for E. coli and 1.9×10−5 mg·min/L for MS2, respectively. The inactivation of E. coli exhibited an initial lag phase until 0.5×10−4 mg·min/L of Ct.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. T. Kohn and K. L. Nelson, Environ. Sci. Technol., 41, 192 (2007).

    Article  CAS  Google Scholar 

  2. M. Cho, H. Chung, W. Choi and J. Yoon, Water Res., 38, 1069 (2004).

    Article  CAS  Google Scholar 

  3. Y. Horie, D. A. David, M. Taya and S. Tone, Ind. Eng. Chem. Res., 35, 3920 (1996).

    Article  CAS  Google Scholar 

  4. M. Cho, J. Lee, Y. Mackeyev, L. J. Wilson, P. J. J. Alvarez, J. B. Hughes and J.-H. Kim, Environ. Sci. Technol., 44, 6685 (2010).

    Article  CAS  Google Scholar 

  5. H. Mamane, H. Shemer and K. G. Linden, J. Hazard. Mater., 146, 479 (2007).

    Article  CAS  Google Scholar 

  6. C. Liu, D. Kong, P. -C. Hsu, H. Yuan, H.-W. Lee, Y. Liu, H. Wang, S. Wang, K. Yan, D. Lin, P. A. Maraccini, K. M. Parker, A. B. Boehm and Y. Cui, Nat. Nanotechnol., 11, 1098 (2016).

    Article  CAS  Google Scholar 

  7. T. A. Dahl, W. R. Midden and P. E. Hartman, Photochem. Photobiol., 48, 345 (1987).

    Article  Google Scholar 

  8. T. A. Dahl, W. R. Midden and P. E. Hartman, Photochem. Photobiol., 48, 605 (1989).

    Google Scholar 

  9. T. A. Dahl, W. R. Midden and D. C. Necker, J. Bacteriol., 171, 2188 (1988).

    Article  Google Scholar 

  10. S. A. Bezman, P. A. Burtis, T. P. J. Izod and M. A. Thayer, Photochem. Photobiol., 28, 325 (1978).

    Article  CAS  Google Scholar 

  11. E. M. Hotze, A. R. Badireddy, S. Chellam and M. R. Weisner, Environ. Sci. Technol., 43, 6639 (2009).

    Article  CAS  Google Scholar 

  12. K. Müller-Breitkreutz, H. Mohr, K. Brivida and H. Seis, J. Photoch. Photobio. B-Biol., 30, 63 (1995).

    Article  Google Scholar 

  13. M. Schäfer, C. Schmitz, R. Facius, G. Horneck, B. Milow, K.-H. Funken and J. Ortner, Photochem. Photobiol., 71, 514 (2000).

    Article  Google Scholar 

  14. A. I. Silverman, B. M. Peterson, A. B. Boehm, K. McNeill and K. L. Nelson, Environ. Sci. Technol., 47, 1870 (2013).

    Article  CAS  Google Scholar 

  15. E. Ryberg, C. Chu and J.-H. Kim, Environ. Sci. Technol., 52, 13361 (2018).

    Article  CAS  Google Scholar 

  16. M. Cho, H. Chung, W. Choi and J. Yoon, Appl. Environ. Microbiol., 71, 270 (2005).

    Article  CAS  Google Scholar 

  17. H. A. Foster, I. B. Ditta, S. Varghese and A. Steele, Appl. Microbiol. Biotechnol., 90, 1847 (2011).

    Article  CAS  Google Scholar 

  18. M. Castro-Alférez, M. I. Polo-López and P. Fernández-Ibáñez, Sci. Rep., 6, 38145 (2016).

    Article  Google Scholar 

  19. A. Amrullah, N. Paksung and Y. Matsumura, Korean J. Chem. Eng., 36, 433 (2019).

    Article  CAS  Google Scholar 

  20. J. Brame, M. Long, Q. Li and P. Alvarez, Water Res., 60, 259 (2014).

    Article  CAS  Google Scholar 

  21. C. S. Foote, Science, 162, 963 (1968).

    Article  CAS  Google Scholar 

  22. C. S. Foote, Acc. Chem. Res., 1, 104 (1968).

    Article  CAS  Google Scholar 

  23. M. E. Jiménez-Hernández, F. Manjón, D. García-Fresnadillo and G. Orellana, Sol. Energy, 80, 1382 (2006).

    Article  Google Scholar 

  24. J. D. Buck and R. C. Cleverdon, Limnol. Oceanogr., 5, 78 (1960).

    Article  Google Scholar 

  25. S. Y. Park and C. G. Kim, Environ. Eng. Res., 23, 282 (2018).

    Article  Google Scholar 

  26. B. B. Wentworth and L. French, Exp. Biol. Med., 135, 253 (1970).

    Article  CAS  Google Scholar 

  27. F. E. Scully, Jr. and J. Hoigné, Chemosphere, 16, 681 (1987).

    Article  CAS  Google Scholar 

  28. Y. Kouame and C. N. Haas, Water Res., 25, 1027 (1991).

    Article  CAS  Google Scholar 

  29. N. K. Hunt and B. J. Mariñas, Water Res., 31, 1355 (1997).

    Article  Google Scholar 

  30. J. L. Rennecker, B. J. Mariñas, J. H. Owens and E. W. Rice, Water Res., 33, 2481 (1999).

    Article  CAS  Google Scholar 

  31. D. J. Müller and A. Engel, J. Mol. Biol., 285, 1347 (1999).

    Article  Google Scholar 

  32. M. Cho, J. Kim, J. Y. Kim, J. Yoon and J.-H. Kim, Water Res., 44, 3410 (2010).

    Article  CAS  Google Scholar 

  33. M. Cho, Y. Lee, H. Chung and J. Yoon, Appl. Environ. Microbiol., 70, 1129 (2004).

    Article  CAS  Google Scholar 

  34. M. Cho, Doctoral dissertation, Seoul National University, Seoul, Korea (2005).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Korea Ministry of Environment as an “Advanced Industrial Technology Development Project” (2017000140005) and as “Industrial Facilities & Infrastructure Research Program” (88107), and by NRF-2017-Global Ph.D. Fellowship Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changha Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, T., Kim, HE., Cho, J. et al. Inactivation of Escherichia coli and MS2 coliphage via singlet oxygen generated by homogeneous photosensitization. Korean J. Chem. Eng. 36, 1785–1790 (2019). https://doi.org/10.1007/s11814-019-0353-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-019-0353-4

Keywords

Navigation