Skip to main content
Log in

Effects of chloride and other anions on electrochemical chlorine evolution over self-doped TiO2 nanotube array

  • Catalysis, Reaction Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Electrochemically reduced TiO2 nanotube arrays (r-TiO2 NTA) have emerged as an alternative that can replace the dimensionally stable anode (DSA®) due to comparable performance for chlorine evolution reaction (ClER). However, previous studies have reported applications of r-TiO2 NTA for ClER only under limited conditions (concentrated NaCl solution without other anions). Thus, the potential of r-TiO2 NTA for CIER has not yet been fully demonstrated. Therefore, this study focused on investigating ClER of r-TiO2 NTA under various parameters such chloride concentration (5–1,000 mM) and the presence of other anions (i.e., SO 2−4 , HPO 2−4 , and CO 2−3 ). The results suggest that, at low chloride concentration (5–50 mM NaCl), the r-TiO2 NTA exhibited higher performance for CIER (production rate of 3.35–9.82 mg l−1 min−1, current efficiency of 14.43–42.04%, energy consumption of 69.24–11.02 Wh g(Cl2)−1) than RuO2 (2.55–7.88 mg l−1 min−1, 11.07–33.85% and 77.29–6.84 Wh g(Cl2)−1, respectively). Additionally, other anions did not affect the ClER of r-TiO2 NTA more than RuO2. These can be explained by the indirect pathway of ClER in r-TiO2 NTA while the direct pathway of RuO2 was negatively affected by dilute chloride and other anions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Radjenovic and D. L. Sedlak, Environ. Sci. Technol., 49, 11292 (2015).

    Article  CAS  Google Scholar 

  2. B. P. Chaplin, Environ. Sci. Process. Impacts, 16, 1182 (2014).

    Article  CAS  Google Scholar 

  3. J. Jeong, C. Kim and J. Yoon, Water Res., 43, 895 (2009).

    Article  CAS  Google Scholar 

  4. G. Hurwitz, P. Pornwongthong, S. Mahendra and E. M. V. Hoek, Chem. Eng. J., 240, 235 (2014).

    Article  CAS  Google Scholar 

  5. F. H. Oliveira, M. E. Osugi, F. M. M. Paschoal, D. Profeti, P. Olivi and M. V B. Zanoni, J. Appl. Electrochem., 37, 583 (2007).

    Article  CAS  Google Scholar 

  6. C. A. Martínez-Huitle and E. Brillas, Angew. Chem. Int. Ed., 47, 1998 (2008).

    Article  Google Scholar 

  7. J. Kim, C. Kim, S. Kim and J. Yoon, Korean Chem. Eng. Res., 53, 531 (2015).

    Article  CAS  Google Scholar 

  8. I. Sirés, E. Brillas, M. A. Oturan, M. A. Rodrigo and M. Panizza, Environ. Sci. Pollut. Res., 21, 8336 (2014).

    Article  Google Scholar 

  9. S. Trasatti, Electrochim. Acta, 45, 2377 (2000).

    Article  CAS  Google Scholar 

  10. P. Roy, S. Berger and P. Schmuki, Angew. Chem. Int. Ed., 50, 2904 (2011).

    Article  CAS  Google Scholar 

  11. G. K. Mor, O. K. Varghese, M. Paulose, K. Shankar and C. A. Grimes, Sol. Energy Mater. Sol. Cells, 90, 2011 (2006).

    Article  CAS  Google Scholar 

  12. B. D. Yao, Y. F. Chan, X. Y. Zhang, W. F. Zhang, Z. Y. Yang and N. Wang, Appl. Phys. Lett., 82, 281 (2003).

    Article  CAS  Google Scholar 

  13. B. Chen, J. Hou and K. Lu, Langmuir, 29, 5911 (2013).

    Article  CAS  Google Scholar 

  14. D. Regonini, C. R. Bowen, A. Jaroenworaluck and R. Stevens, Mater. Sci. Eng. R Reports, 74, 377 (2013).

    Article  Google Scholar 

  15. J. M. Macak, B. G. Gong, M. Hueppe and P. Schmuki, Adv. Mater., 19, 3027 (2007).

    Article  CAS  Google Scholar 

  16. Y. C. Nah, I. Paramasivam and P. Schmuki, ChemPhysChem, 11, 2698 (2010).

    Article  CAS  Google Scholar 

  17. R. P. Vitiello, J. M. Macak, A. Ghicov, H. Tsuchiya, L. F. P. Dick and P. Schmiki, Electrochem. Commun., 8, 544 (2006).

    Article  CAS  Google Scholar 

  18. Y. L. Pang and A. Z. Abdullah, Appl. Catal. B Environ., 129, 473 (2013).

    Article  CAS  Google Scholar 

  19. J. H. Park, S. Kim and A. J. Bard, Nano Lett., 6, 24 (2006).

    Article  CAS  Google Scholar 

  20. X. Lu, G. Wang, T. Zhai, M. Yu, J. Gan, Y. Tong and Y. Li, Nano Lett., 12, 1690 (2012).

    Article  CAS  Google Scholar 

  21. S. P. Hong, S. Kim, N. Kim, J. Yoon and C. Kim, Korean J. Chem. Eng., 36, 1753 (2019).

    Article  CAS  Google Scholar 

  22. H. Wu, D. Li, X. Zhu, C. Yang, D. Liu and X. Chen, Electrochim. Acta, 116, 129 (2014).

    Article  CAS  Google Scholar 

  23. C. Kim, S. Kim, J. Choi, J. Lee, J. S. Knag, Y. Sung, J. Lee, W. Choi and J. Yoon, Electrochim. Acta, 141, 113 (2014).

    Article  CAS  Google Scholar 

  24. C. Kim, S. Kim, J. Lee, J. Kim and J. Yoon, ACS Appl. Mater. Interfaces, 7, 7486 (2015).

    Article  CAS  Google Scholar 

  25. C. Kim, S. Kim, S. P. Hong, J. Lee and J. Yoon, Phys. Chem. Chem. Phys., 18, 14370 (2016).

    Article  CAS  Google Scholar 

  26. C. Kim, S. Lee, S. Kim and J. Yoon, Electrochim. Acta, 222, 1578 (2016).

    Article  CAS  Google Scholar 

  27. S. Kim, C. Kim, J. Lee, S. Kim, J. Lee, J. Kim and J. Yoon, ACS Sustain. Chem. Eng., 6, 1620 (2018).

    Article  CAS  Google Scholar 

  28. J. Kim, C. Kim, S. Kim and J. Yoon, J. Ind. Eng. Chem., 66, 478 (2018).

    Article  CAS  Google Scholar 

  29. A. Ahmadi and T. Wu, Environ. Sci. Water Res. Technol., 3, 534 (2017).

    Article  CAS  Google Scholar 

  30. H. Zhou and Y. Zhang, J. Power Sources, 272, 866 (2014).

    Article  CAS  Google Scholar 

  31. J. Kim, C. Lee and J. Yoon, Ind. Eng. Chem. Res., 57, 11465 (2018).

    Article  CAS  Google Scholar 

  32. A. Kapałka, G. Fóti and C. Comninellis, Electrochem. Commun., 10, 607 (2008).

    Article  Google Scholar 

  33. Y. Jing and B. P. Chaplin, Environ. Sci. Technol., 51, 2355 (2017).

    Article  CAS  Google Scholar 

  34. C. Barrera-Díaz, P. Cañizares, F. J. Fernández, R. Natividad and M. A. Rodrigo, J. Mex. Chem. Soc., 58, 256 (2014).

    Google Scholar 

Download references

Acknowledgements

This research was supported by the Technology Innovation Program (10082572, Development of Low Energy Desalination Water Treatment Engineering Package System for Industrial Recycle Water Production) funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea) and Korea Ministry of Environment as Global Top Project (Grant number: 2016002110008).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Choonsoo Kim or Jeyong Yoon.

Additional information

Supporting Information

Additional information as noted in the text. This information is available via the Internet at u]http://www.springer.com/chemistry/journal/11814.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, T., Kim, S., Choi, J.Y. et al. Effects of chloride and other anions on electrochemical chlorine evolution over self-doped TiO2 nanotube array. Korean J. Chem. Eng. 38, 756–762 (2021). https://doi.org/10.1007/s11814-020-0738-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-020-0738-4

Keywords

Navigation